当前位置: 本站首页 >> 人才培养 >> 研究生教育 >> 导师介绍 >> 正文


刘业朋
2025-10-08 17:05     (阅读)

个人简介:

刘业朋,计算机科学与技术专业专业负责人,硕士生导师。担任IEEE Trans系列汇刊TPAMITIPTKDETCSVTTNNLSTIITCYB等,以及ACM Transactionson Knowledge Discovery from Data (TKDD)Pattern Recognition(PR), Neural Networks等期刊审稿人,博士生导师张彩明教授。 

联系方式:lyp@sdtbu.edu.cn

2010.09-2014.06,山东大学计算机科学与技术学院,获工学学士学位; 

2014.09-2020.12,山东大学计算机科学与技术学院,获工学博士学位; 

2021.01-2023.12,山东工商学院计算机科学与技术学院,讲师; 

2023.09-2024.08,中国科学院烟台海岸带研究所,访学;

2024.01-至今,山东工商学院计算机科学与技术学院,副教授。 

研究方向:

[1].计算机图形学

涉及几何造型、几何建模与优化等方面 

[2].图像处理

自然图像处理:涉及图像超分辨率、去噪、平滑和修复等

医学图像处理:涉及单目标、多目标医学图像分割

遥感图像处理:涉及遥感图像变化检测

[3].时间序列预测

时序短期预测:涉及金融大数据预测、智能分析与可视化等

时序长期预测:涉及电力、天气、汇率、交通流量等的预测

科研项目:

[1].国家自然科学基金浙江联合基金重点项目:智慧医疗中大数据分析的基础理论和语义融合技术,2017.1-2021.12,参与,已结题。

[2].山东省自然科学基金青年项目:基于低秩拟合多尺度特征融合建模的图像修复关键技术研究,2022.1-2024.12,主持,在研。

[3].山东捷瑞数字技术开发成果转化,2022.6-2022.9,主持,完结(横向)。

[4].山东工商学院财富管理跨学科交叉研究项目:“区块链+物联网供应链金融智能化研究,2023.1-2024.12,主持,完结。

学生培养:

[1].国家奖学金:黄思远(2022级,第一届研究生)

论文:

第一或通讯作者等论文

[1].ZhigenHuang, Yepeng Liu∗, et al. Achannel-independent network using patch external attention and mamba forlong-term multivariate time series forecasting[J]. Applied Soft Computing,2025, DOI:ASOC_114036. SCI 2Top.

[2].ZhigenHuang, Yepeng Liu∗, et al. Achannel-independent network based on wavelet enhancement for long-term timeseries forecasting[J]. Engineering Applications of Artificial Intelligence, 2025,154:110964.SCI 1Top.

[3]. YepengLiu∗, Zhigen Huang,et al. Adecoupled network with variable graph convolution and temporal external attentionfor long-term multivariate time series forecasting[J]. Expert Systems WithApplications, 2025, 271:126584. SCI 1Top.

[4]. Jiafu Zeng,Yepeng Liu, et al. Unsupervised image smoothing framework withmulti-scale separated convolutional attention and multiple loss constraints[J].Computers & Graphics-UK, 2025, 132:104413. SCI 3.

[5]. Jiafu Zeng,Yepeng Liu*, et al. Unsupervised bidirectional generativesmoothing framework with frequency decomposition and attention enhancement[j]. Neurocomputing,2025, 652:131085. SCI 2.

[6]. Jiafu Zeng,Yepeng Liu*, et al. CycleGAN-based unsupervised image smoothingframework with wavelet downsampling and multi-scale spatially-adaptiveattention. Digital Signal Processing, 2025, 165:105300. SCI 3.

[7]. YepengLiu∗, Feiyu Liu, et al. Dtla-net: a direct2dtransformer with linear angle attention network for multi-organ medical imagesegmentation[J].  International Journal of Machine Learning andCybernetics ,2025,16(9):6717-6735, SCI 4.

[8]. Xiaoyi Tian,Yepeng Liu, et al. SDVS-Net: A spatial dilated convolution andvariable self-attention network for multivariate long-term time seriesforecasting. Neurocomputing, 2025, 619:129148. SCI 2.

[9]. SiyuanHuang, Yepeng Liu∗, et al. MEAformer:An all-MLP Transformer with Temporal External Attention for Long-term TimeSeries Forecasting [J]. Information Sciences,2024, 669:120605. SCI 1Top.

[10]. SiyuanHuang, Yepeng Liu. FL-Net: Amulti-scale cross-decomposition network with frequency external attention forlong-term time series forecasting[J]. Knowledge-Based Systems, 2024: 111473. SCI1Top.

[11]. SiyuanHuang, Yepeng Liu, et al.CrossWaveNet: A Dual-Channel Network with Deep Cross-Decomposition for LongtermTime Series Forecasting[J].Expert Systems With Applications, 2024, 238: 121642, SCI 1Top. 

[12]. YepengLiu, Siyuan Huang, et al. A stock seriesprediction model based on variational mode decomposition and dual-channelattention network[J].Expert Systems With Applications, 2024, 238: 121708, SCI 1Top. 

[13]. ZhenyangHuang, Yixing Zhao, Jinjiang Li, Yepeng Liu*. Bgman:Boundary-Prior-Guided Multi-scale Aggregation Network for skin lesionsegmentation[J]. International Journal of Machine Learning and Cybernetics,2024: 1-20.SCI 3.

[14]. Yu Shangguan,Jinjiang Li, Yepeng Liu*, Fan Zhang, Caiming Zhang. Attentionfiltering network based on branch transformer for Change Detection in RemoteSensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing.vol.62, pp. 1-19, 2024, doi: 10.1109/TGRS.2023.3345645. SCI 1Top. 

[15]. JunyuFan, Jinjiang Li, Yepeng Liu*, Fan Zhang. Frequency-aware robustmultidimensional information fusion framework for remote sensing imagesegmentation[J]. Engineering Applications of Artificial Intelligence, 2024,129: 107638, SCI 2Top.

[16]. YiyangZhao, Xinyang Song, Jinjiang Li, Yepeng Liu*. CSCNet: ACross-Scale Coordination Siamese Network for Building Change Detection[J]. IEEEJournal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.17, pp. 1377-1389, 2024, doi: 10.1109/JSTARS.2023.3337999. SCI 2 Top.

[17]. YiyangZhao, Jinjiang Li, Yepeng Liu*. Dynamic Weight HiLo AttentionNetwork for Medical Image Multiple Organ Segmentation[J]. International Journalof Imaging Systems and Technology, 2023, DOI:10.1002/ima.22966.SCI 4. 

[18]. YepengLiu*,Dezhi Yang, Fan Zhang, Qingsong Xie, Caiming Zhang. Deep Recurrent ResidualChannel Attention Network for Single Image Super-resolution[J]. The VisualComputer, 2023,DOI:10.1007/s00371-023-03044-0. SCI 3.

[19]. 刘业朋*,杨得志, 李思远, 张帆, 张彩明. 基于图像分解和相对全变分的图像平滑[J]. 图学学报, 2022, 43(6):7,CSCD. 

[20]. YepengLiu, FanZhang, Yongxia Zhang, Xuemei Li, Caiming Zhang*. Image Smoothing Based onHistogram Equalized Content-aware Patches and Direction-constrained SparseGradients[J]. Signal Processing, 2021, 183(4):108037. SCI 2 .

[21]. YepengLiu,Xuemei Li, Xin Zhang, Caiming Zhang*. Image enlargement method based on cubicsurfaces with local features as constraints[J]. Signal Processing, 2020,166:107266-107266. SCI 2 .

[22]. YepengLiu, XuemeiLi*, Qiang Guo, Caiming Zhang. Adaptive Iterative Global Image Denoising MethodBased on SVD[J]. IET Image Processing,2020, 14(13): 3028-3038. SCI 4.

[23]. YepengLiu,Xiang Ma, Xuemei Li*, Caiming Zhang. Two-stage image smoothing based onedge-patch histogram equalization and patch decomposition[J]. IET ImageProcessing,2020, 14(6): 1132-1140. SCI 4.

其他参与论文

[24]. Newperspectives on multivariate time series forecasting: Lightweight networkscombined with multi-scale hybrid state space models. Expert Systems WithApplications, 2025, 295:128845.

[25]. AMultiscale Transformer Model for Long Time Series Forecasting Based on DiscreteWavelet Transform and Residual Learning Modules. Journal of Forecasting, 2025, DOI10.1002/for.70023.

[26]. Probabilisticintervals prediction based on adaptive regression with attention residualconnections and covariance constraints. Engineering Applications of ArtificialIntelligence, 2025, 156:111013.

[27]. CFDformer:Medical image segmentation based on cross fusion dual attention network.Biomedical Signal Processing and Control 101 (2025): 107208.

[28]. 基于混合注意力与门控倒残差模块的图像去雨网络[J]. 计算机辅助设计与图形学学报. DOI:10.3724/SP.J.1089.2024-00341

[29]. Probabilisticinterval prediction method based on shape-adaptive quantile regression[J].Expert Systems, doi:10.1111/exsy.13585. 2024, SCI 4.

[30]. TruncatedWeighted Nuclear Norm Regularization and Sparsity for Image Denoising[C]//2023IEEE International Conference on Image Processing (ICIP). IEEE, 2023:1825-1829.

[31]. Fastand highly coupled model for time series forecasting. Multimedia Tools andApplications, 2023, DOI:10.1007/s11042-023-15787-y, SCI 4 . 

[32]. Resformer:Combine quadratic linear transformation with efficient sparse Transformer forlong-term series forecasting. 2023, SCI 4 .

[33]. SingleImage Super-Resolution Using Feature Adaptive Learning and Global StructureSparsity[J]. Signal Processing, 2021(8):108184. SCI 2 .

[34]. Single-imagesuper-resolution based on local biquadratic spline with edge constraints andadaptive optimization in transform domain[J]. The Visual Computer,2020(5):1-16. SCI 3.

[35]. SingleImage Super-Resolution via Dynamic Lightweight Database with Local-FeatureBased Interpolation[J]. Journal of Computer Science and Technology, 2019,34(3):537-549. SCI 2 .

[36]. High-resolutionimages based on directional fusion of gradient[J]. Computational Visual Media,2016(1):13. EI

专利:

[1].基于九曲面片双四次拟合的图像放大方法和装置,ZL202210683222.22023(第一发明人)。

[2].火焰切割装置的切割控制方法,ZL202111281385.X2022(第三发明人)。

[3].基于深度递归残差通道注意力的图像放大方法,2023(第一发明人,实质审查)。

[4].基于变分模态分解和双通道自注意力的电力负荷预测方法,2023(第一发明人,实质审查)。

[5].基于深度交叉分解的双通道电力负荷预测方法, 2024(第二发明人,实质审查)。

[6].基于分片分解和直方图均衡化的两阶段图像平滑方法,2024(第一发明人,实质审查)。 

已是首条
下一条:范国栋
关闭窗口

相 关 链 接

学院官方微信

联系我们:

山东工商学院

地址:山东省烟台市莱山区滨海中路191号

电话:0535-6903541                    邮编:264005

Copyright(C) 2019-2020 山东工商学院计算机科学与技术学院